Abstract
In Chinese text clustering, short text is very different from traditional long text, principally in the low frequency of words. As a result, traditional text feature extraction and the method for weight calculating is not directly suitable for short text clustering .To solve the problem of clustering drift in short text segments ,this paper proposes an method for feature extraction through improving the method of weight calculating based on words co-occurrence. Experiments show the method can get better performance in Chinese short-text clustering compared with the traditional method TF-IDF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.