Abstract
Fuzzy C-means clustering algorithm (FCM) is a widely used clustering algorithm, however it has its drawbacks: the initial number of clusters needs to be determined by the manual control according to the prior knowledge; the objective function ignores the disequilibrium problems among the sample attribute data. In view of these problems, this paper proposes a sample weighted FCM algorithm based on simulated annealing algorithm. It uses the simulated annealing algorithm which has an excellent ability of seeking global optimal solution to calculate the initial value of the number of clusters and makes certain weighting process on the clustering center function and the objective function. The experiment results show that this proposed algorithm has better classification accuracy and classification accuracy rate compared with FCM algorithm and the common sample weighted FCM clustering algorithms. Meanwhile, this algorithm needs not to be determined the initial value of clusters manually. The improved algorithm possesses the superiority and the actual application value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.