Abstract

Feature selection is a key issue in the domain of machine learning and related fields. The results of feature selection can directly affect the classifier's classification accuracy and generalization performance. Recently, a statistical feature selection method named effective range based gene selection (ERGS) is proposed. However, ERGS only considers the overlapping area (OA) among effective ranges of each class for every feature; it fails to handle the problem of the inclusion relation of effective ranges. In order to overcome this limitation, a novel efficient statistical feature selection approach called improved feature selection based on effective range (IFSER) is proposed in this paper. In IFSER, an including area (IA) is introduced to characterize the inclusion relation of effective ranges. Moreover, the samples' proportion for each feature of every class in both OA and IA is also taken into consideration. Therefore, IFSER outperforms the original ERGS and some other state-of-the-art algorithms. Experiments on several well-known databases are performed to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.