Abstract
Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the Bak-Sneppen model of self-organized criticality from the field of statistical physics. The canonical EO works on a single solution and only employs mutation operator, which is inclined to prematurely converge to local optima. In this paper, a population-based extremal optimization algorithm is developed to provide a parallel way for exploring the search space. In addition, a new mutation strategy named cloud mutation is proposed by analyzing the distribution knowledge of each component set in the solution set. The population-based extremal optimization with cloud mutation is characteristic of mining and recreating the uncertainty properties of candidate solutions in the search process. Finally, the proposed algorithm is applied to numerical optimization problems in comparison with other reported meta-heuristic algorithms. The statistical results show that the proposed algorithm can achieve a satisfactory optimization performance with regards to solution quality, successful rate, convergence speed, and computing robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.