Abstract
Differential Evolution (DE) is a population-based Evolutionary Algorithm (EA) for solving optimization problems over continuous spaces. Many optimization problems are constrained and have a bounded search space from which some vectors leave when the mutation operator of DE is applied. Therefore, it is necessary the use of a boundary constraint-handling method (BCHM) in order to repair the invalid mutant vectors. This paper presents a generalized and improved version of the Centroid BCHM in order to keep the search within the valid ranges of decision variables in constrained numerical optimization problems (CNOPs), which has been tested on a robust and comprehensive set of experiments that include a variant of DE specialized in dealing with CNOPs. This new version, named Centroid [Formula: see text], relocates the mutant vector in the centroid formed by K random vectors and one vector taken from the population that is within or near the feasible region. The results show that this new version has a major impact on the algorithm’s performance, and it is able to promote better final results through the improvement of both, the approach to the feasible region and the ability to generate better solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.