Abstract
The present paper proposes the development of a three-level thresholding based image segmentation technique for real images obtained from CT scanning of a human head. The proposed method utilizes maximization of fuzzy entropy to determine the optimal thresholds. The optimization problem is solved by employing a very recently proposed population-based optimization technique, called biogeography based optimization (BBO) technique. In this work we have proposed some improvements over the basic BBO technique to implement nonlinear variation of immigration rate and emigration rate with number of species in a habitat. The proposed improved BBO based algorithm and the basic BBO algorithm are implemented for segmentation of fifteen real CT image slices. The results show that the proposed improved BBO variants could perform better than the basic BBO technique as well as genetic algorithm (GA) and particle swarm optimization (PSO) based segmentation of the same images using the principle of maximization of fuzzy entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.