Abstract
A recent paper titled “On the Problem of the Automated Design of Large-Scaled Robot Skin” (Anghinolfi et al., 2013) published in the IEEE Transactions on Automation Science and Engineering addressed the problem of covering the surface of a humanoid robot with the largest number of nonoverlapping equilateral triangular sensor modules. The problem is eventually approximated by a simpler one: how to find the placement of a given polygon P on an equilateral triangular grid G that contains the largest number of the grid triangles. In this paper, we show how to improve the efficiency of the algorithm presented in that paper. Further, we show that the general problem of filling P with the largest number of disjoint equilateral triangles (all entirely contained in P and all of the same size) is not equivalent to that of finding an optimal placement of P on G. Using this result, we propose an improved heuristic for the original problem of covering the skin of a robot with the largest number of triangular sensor modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.