Abstract

According to the characteristics of flexible job shop scheduling problems, a dual-resource constrained flexible job shop scheduling problem (DRCFJSP) model with machine and worker constraints is constructed such that the makespan and total delay are minimized. An improved African vulture optimization algorithm (IAVOA) is developed to solve the presented problem. A three-segment representation is proposed to code the problem, including the operation sequence, machine allocation, and worker selection. In addition, the African vulture optimization algorithm (AVOA) is improved in three aspects: First, in order to enhance the quality of the initial population, three types of rules are employed in population initialization. Second, a memory bank is constructed to retain the optimal individuals in each iteration to increase the calculation precision. Finally, a neighborhood search operation is designed for individuals with certain conditions such that the makespan and total delay are further optimized. The simulation results indicate that the qualities of the solutions obtained by the developed approach are superior to those of the existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.