Abstract
Electromyography (EMG) is a well known technique used for recording electrical activity produced by human muscles. In the last few decades, EMG signals are used as a control input for prosthetic hands. There are several multifunctional myoelectric prosthetic hands for amputees on the market, but so forth, none of these devices permits the natural control of more than two degrees of freedom. In this paper we present our implementation of the pattern classification using custom made components (electrodes and an embedded EMG amplifier). The components were evaluated in offline and online tests, in able bodied as well as amputee subjects. This type of control is based on computing the time domain features of the EMG signals recorded from the forearm and using these features as input for a Linear Discriminant Analysis (LDA) classifier estimating the intention of the prosthetic user.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.