Abstract
Cryptosporidium hominis, an anthropologically transferred species in the Cryptosporidium genus, represents many clinical studies in several countries. Its growth in the recent decade is primarily owing to epidemiologic studies. This parasite has complicated life cycles that require differentiation through a variety of phases of development and passage across two or more hosts throughout their lifetimes. As they move from host to host and environment to environment, pathogenic organisms are continually exposed to unexpected changes in the circumstances under which they develop. Heat shock proteins (HSPs) are targets of the host immune response; they are involved in the progression of diseases and play a significant part in this process. It has been discovered that the immunodominant immunogenic antigens in parasite infections HSPs. In this study, we have generated a multi-epitope vaccine against Cryptosporidium hominis (C. hominis) by using heat shock proteins. The epitopes that were selected had a substantial binding affinity for the B- and T-cell reference set of alleles, a high antigenicity score, a nature that was not allergic, a high solubility, non-toxicity and good binders. The epitopes were incorporated into a chimeric vaccine by using appropriate linkers. In order to increase the immunogenicity of the connected epitopes and effectively activate both innate and adaptive immunity, an adjuvant was attached to the epitopes. We have also analyzed the physiochemical characteristics of the vaccine which were satisfactory and then lead to the development of a 3D model. In addition, the binding confirmation of the vaccine to the TLR-4 innate immune receptor was also determined using molecular docking and molecular dynamics (MD) simulation. The results of this simulation show that the vaccine has a strong binding affinity for TLR4, which indicates that the vaccine is highly effective. In general, the vaccine that has been described here has a good potential for inducing protective and targeted immunogenicity, however, this hypothesis is contingent upon more experimental testing.Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.