Abstract

The paper presents a numerical method for the simulation of bubbles with variable shape in the framework of an immersed boundary method. The liquid-gas interface is described analytically by a series expansion in spherical harmonics. Such a representation of the interface is very accurate and robust and the error of the computed surface curvature is substantially smaller compared to a discrete representation of the surface by grid points. The shape of the bubble is computed by minimizing the local displacement energy of pressure and surface tension forces and is coupled to the continuous phase by adapting the Lagrangian surface mesh in each time step. This is done with the constraint of constant bubble volume exactly implemented. As a first step the bubbles are restricted to axisymmetric shapes. The resulting algorithm is thoroughly validated by several numerical tests and finally applied to freely rising bubbles with stationary and oscillatory shape as well. The computed bubble shapes are in very good agreement with experimental and numerical reference data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.