Abstract
The Cartesian parallel magnetic imaging problem is formulated variationally using a high-order penalty for coil sensitivities and a total variation like penalty for the reconstructed image. Then the optimality system is derived and numerically discretized. The objective function used is non-convex, but it possesses a bilinear structure that allows the ambiguity among solutions to be resolved technically by regularization and practically by normalizing a pre-estimated norm of the reconstructed image. Since the objective function is convex in each single argument, convex analysis is used to formulate the optimality condition for the image in terms of a primal-dual system. To solve the optimality system, a nonlinear Gauss-Seidel outer iteration is used in which the objective function is minimized with respect to one variable after the other using an inner generalized Newton iteration. Computational results for in vivo MR imaging data show that a significant improvement in reconstruction quality can be obtained by using the proposed regularization methods in relation to alternative approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.