Abstract
This paper mainly designs an image recognition algorithm of bolt loss in underground pipelines. Firstly, the local binary pattern (LBP) operator was improved to optimize the information content of eigenvectors and enhance the discriminability. Next, the patterns were selected through weighting and ranking, thereby optimizing the original features in each channel of the image. Meanwhile, the main patterns of each channel were classified and identified with the support vector machine (SVM) classifier. The radial basis function (RBF) was taken as the kernel function for the SVM, and the teaching-learning-based optimization (TLBO) algorithm was improved to optimize the SVM parameters. Finally, the improved SVM classifier assigns suitable weights to the predicted class tags of different channels, facilitating the recognition of bolt loss. The research results shed new light on the application of swarm intelligence in image recognition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have