Abstract

Hazy images produce negative influences on visual applications in the open air since they are in poor visibility with low contrast and whitening color. Numerous existing methods tend to derive a totally rough estimate of scene depth. Unlike previous work, we focus on the probability distribution of depth that is considered as a scene prior. Inspired by the denoising work of multiplicative noises, the inverse problem for hazy removal is recast as deriving the optimal difference between scene irradiance and the airlight from a constrained energy functional under Bayesian and variation theories. Logarithmic maximum a posteriori estimator and a mixed regularization term are introduced to formulate the energy functional framework where the regularization parameter is adaptively selected. The airlight, another unknown quantity, is inferred precisely under a geometric constraint and dark channel prior. With these two estimates, scene irradiance can be recovered. The experimental results on a series of hazy images reveal that, in comparison with several relevant and most state-of-the-art approaches, the proposed method outperforms in terms of vivid color and appropriate contrast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.