Abstract
The rapid development of social network in recent years has spurred enormous growth of near-duplicate videos. The existence of huge volumes of near-duplicates shows a rising demand on effective near-duplicate video retrieval technique in copyright violation and search result reranking. In this paper, we propose an image-based algorithm using improved Edit distance for near-duplicate video retrieval and localization. By regarding video sequences as strings, Edit distance is used and extended to retrieve and localize near-duplicate videos. Firstly, bag-of-words (BOW) model is utilized to measure the frame similarities, which is robust to spatial transformations. Then, non-near-duplicate videos are filtered out by computing the proposed relative Edit distance similarity (REDS). Next, a detect-and-refine-strategy-based dynamic programming algorithm is proposed to generate the path matrix, which can be used to aggregate scores for video similarity measure and localize the similar parts. Experiments on CC_WEB_VIDEO and TREC CBCD 2011 datasets demonstrated the effectiveness and robustness of the proposed method in retrieval and localization tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.