Abstract

IEEE 802.11ah is proven to be a suitable communication standard for Internet of Things. It supports a wide range of modulation and coding schemes (MCSs) along with different data rates. The Restricted Access Windows (RAW)-based channel access mechanism facilitates scalable communication among a large number of devices. However, due to the absence of RAW size adjustment, it fails to optimally utilize the resources in a dynamic network environment. In this paper, we propose a method to estimate the RAW size based on traffic loads and provide relay node support for stations to use different MCSs. The relay nodes dynamically allocate bandwidth to stations belonging to different relay groups. The proposed scheme is seamlessly assimilated into 802.11ah which shows significant performance improvement in terms of throughput and delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.