Abstract

Reactive oxygen species (ROS) are important signaling molecules in cells. Excessive ROS induce expression of inflammatory mediators, such as iNOS and COX2. Antioxidant enzymes, such as, heme oxygenase-1 (HO-1), tightly regulate ROS levels within cells. Here, we show that Bay 11-7082 (Bay) increased HO-1 mRNA and protein expression in human colon cancer HT29 cells. Bay induced translocation of NF-E2-related factor 2 (Nrf2) into nuclei and increased the binding activity of the antioxidant response element (ARE). In addition, PI3K/Akt inhibitor (LY294002) blocked Bay-induced HO-1 expression. Pretreatment with anti-oxidants (N-acetylcysteine (NAC) or glutathione) significantly reduced Bay-induced HO-1 mRNA/protein expression, nuclear translocation of Nrf2 and phosphorylation of Akt. However, PI3K/Akt signaling was independent of Bay-induced Nrf2 translocation and ARE binding activity. Furthermore, other NF-κB inhibitors, such as pyrrolidine dithiocarbamate (PDTC) and MG132, also increased HO-1 mRNA and protein expression. However, although overexpression of dominant negative inhibitory κB (IκB) reduced NF-κB-driven transcriptional activity, IκB overexpression did not increase HO-1 expression. Taken together, our results suggest that in human colon cancer HT29 cells, Bay induces HO-1 expression by increasing ROS production in an Nrf2–ARE and PI3K dependent manner, but Bay acts independently of NF-κB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.