Abstract

The stability of three moving-mesh finite-difference schemes is studied in the L∞ norm for one-dimensional linear convection–diffusion equations. These schemes use central finite differences for spatial discretization and the θ method for temporal discretization, and they are based on conservative and non-conservative forms of transformed partial differential equations. The stability conditions obtained consist of the CFL condition and the mesh speed related conditions. The CFL condition is independent of the mesh speed and has the same form as that for fixed meshes. The mesh speed related conditions restrict how fast the mesh can move. The conditions of this type obtained in this paper are weaker than those in the existing literature and can be satisfied when the mesh is sufficiently fine. Illustrative numerical results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.