Abstract

Using a variety of computational approaches, we demonstrate that the energy landscape of low-density silicon (e.g. silicon clathrates) is considerably more complicated than suggested by previous studies and identify several new prospective low-energy silicon allotropes. Many of our new prospective silicon allotropes contain 4-membered rings, previously thought to be incompatible with low-energy structures, while all of them have surprisingly large unit cells. These allotropes are found by identifying minima on the energy landscape of silicon, as described by the Tersoff potential, in two distinctly different ways: (i) via a random search approach and (ii) by optimising sets of four-coordinated nets previously enumerated for silica. The lowest-energy minima found are subsequently refined using periodic density functional theory. We discuss the merits of both approaches and identify the need for robust global optimisation methods that can efficiently explore low-symmetry systems with large numbers of atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.