Abstract
Multi-label learning has received significant attention in the research community over the past few years: this has resulted in the development of a variety of multi-label learning methods. In this paper, we present an extensive experimental comparison of 12 multi-label learning methods using 16 evaluation measures over 11 benchmark datasets. We selected the competing methods based on their previous usage by the community, the representation of different groups of methods and the variety of basic underlying machine learning methods. Similarly, we selected the evaluation measures to be able to assess the behavior of the methods from a variety of view-points. In order to make conclusions independent from the application domain, we use 11 datasets from different domains. Furthermore, we compare the methods by their efficiency in terms of time needed to learn a classifier and time needed to produce a prediction for an unseen example. We analyze the results from the experiments using Friedman and Nemenyi tests for assessing the statistical significance of differences in performance. The results of the analysis show that for multi-label classification the best performing methods overall are random forests of predictive clustering trees (RF-PCT) and hierarchy of multi-label classifiers (HOMER), followed by binary relevance (BR) and classifier chains (CC). Furthermore, RF-PCT exhibited the best performance according to all measures for multi-label ranking. The recommendation from this study is that when new methods for multi-label learning are proposed, they should be compared to RF-PCT and HOMER using multiple evaluation measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.