Abstract
In 1977, Hedy Attouch established that a sequence of (closed proper) convex functions epi-converges to a convex function if and only if the graphs of the subdifferentials converge (in the Mosco sense) to the subdifferential of the limiting function and (roughly speaking) there is a condition that fixes the constant of integration. We show that the theorem is valid if instead one considers functions that are the composition of a closed proper convex function with a twice continuously differentiable mapping (in addition a constraint qualification is imposed). Using Attouch’s Theorem, Rockafellar showed that second-order epi-differentiation of a convex function and proto-differentiability of the subdifferential set-valued mapping are equivalent, moreover the subdifferential of one-half the second-order epi-derivative is the proto-derivative of the subdifferential mapping; we will extend this result to the convexly composite setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.