Abstract
The segmentation of brain magnetic resonance (MR) images into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) has been an intensive studied area in the medical image analysis community. The Gaussian mixture model (GMM) is one of the most commonly used model to represent the intensity of different tissue types. However, as a histogram-based model, the spatial relationship between pixels is discarded in the GMM, making it sensitive to noise. Herein we present a new framework which aims to incorporate spatial information into the standard GMM, where each pixel is assigned its individual prior by leveraging its neighborhood information. Expectation maximization (EM) is modified to estimate the parameters of the proposed method. The method is validated on both synthetic and real brain MR images, showing its effectiveness in the segmentation task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.