Abstract

Currently, the concrete prism test per ASTM C1293 or RILEM AAR-3 is considered the most reliable accelerated test to determine the dosage of pozzolans to suppress alkali–silica reaction (ASR) in concrete. However, the test takes 2years, which makes it impractical as a mixture design tool for new concrete construction. In the present work, a multiple nonlinear regression model is developed for predicting the fly ash dosage necessary to mitigate ASR per CPT. The model uses the oxide compositions of Portland cement and fly ash as well as the reactivity of the aggregates. Seventy-six experimental data points on CPT expansion results for plain Portland cement and fly ash-blended concrete mixtures were used to develop and evaluate the model. The model successfully predicts the fly ash required to mitigate ASR for different aggregates, cement, and fly ash combinations. The prediction errors in most cases meet ASTM C1293 multi-laboratory precision criterion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.