Abstract

As a result of climate change and urbanization, the occurrence of urban flooding has become a common and severe natural hazard that can have devastating consequences on both human society and urban infrastructure. The increasing incidence of urban floods emphasizes the importance of implementing reliable strategies aimed at minimizing losses caused by these disasters. In this regard, an exploratory framework to urban flood collaborative mitigation strategy is developed to optimize the benefits of disaster management and economic investments in flood-prone areas. The proposed framework begins by applying an urban flood model coupled with the source tracking method to simulate hydrological and hydrodynamic process during a storm event, and effectively identifies the synergistic effect of flood volume between different catchments. Subsequently, based on the simulation data from the source tracking model, a method for the comprehensive analysis of spatial prioritization in urban flood management has been developed by employing the combined weight analysis approach. Furthermore, a drainage system dynamic cooperative allocation model is formulated within a comprehensive mathematical programming framework, aiming to effectively reduce the flood volume by considering the synergistic effect. In this comprehensive model, cooperative game theory is utilized to investigate how the flood volume can be effectively mitigated to achieve optimal economic allocation of local municipality. The application of this framework to the Longkungou drainage system of Haikou City demonstrates its potential as a tool for maximizing the economic benefits of disaster mitigation within a drainage system, while minimizing the potential damage caused by urban floods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.