Abstract

AbstractRapid prototyping, also known as additive manufacturing, is a nascent technology that is gaining traction in the context of environmental concerns and waste reduction, as well as the growing trend towards customized design. The additive manufacturing method, which has applications in diverse fields such as aviation, architecture, biomedical and automotive engineering, has also begun to be utilized in the construction of yachts and yacht hulls within the maritime industry. In this experimental study, the influences of sea water on polylactic acid (PLA) and carbon fiber reinforced polylactic acid (PLA/CF) parts manufactured at different infill rates (20%, 60% and 100%) were investigated. The parts were exposed to sea water for three different periods (1, 5, and 10 days) and subsequently subjected to wear tests. The dimensional accuracy, surface roughness, hardness, water absorption, volume loss, and friction coefficient of parts were measured and calculated. Additionally, the worn surfaces of the parts were investigated using field emission scanning electron microscope (FESEM) images. The findings indicate that PLA and PLA/CF parts can be produced with high dimensional accuracy. Furthermore, it can be reported that the water absorption of PLA/CF parts increased, particularly with an increase in the infill rate, while the volume loss decreased. Obtained results indicate the necessity of optimizing the 3D printing parameters and the relationship between the ambient conditions and the wear performance of the 3D printed parts.Highlights 3D printing is a highly promising method for the production of polymer composites. A pioneering study into the effect of infill rate and water absorption on the wear performance. Coefficient of friction values of PLA and PLA/CF parts ranged between 0.37 and 0.75. PLA/CF mostly exhibited higher volume loss than PLA with water absorption. Volume loss declines with a raise in the infill rate from 20% to 100%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.