Abstract

Abstract The jaw coupling with a flexible spacer is frequently used in the torque transmission between shafts with misalignment for machinery. Its torsional stiffness and limit torque closely determine the operational capacity and the dynamic characteristics of the system because the coupling is usually the most flexible link in the driving chain. In this study, the optimal design of a jaw coupling with an elastomeric spacer was investigated using the Taguchi method by considering four design factors: the tightening method of the clamping bolts, the tightening torque of the clamping bolts, the hardness of the thermoplastic polyether ester elastomer spacer and the installation angle between the two end blocks of the coupling. All specimens were tested by using an in-house torsion tester to record the torque-angular deformation responses. The results showed good reliability and repeatability, with a coefficient of variance within 5%. Spacer's hardness was found to be the most significant factor regarding the torsional stiffness, while the magnitude of the clamping torque had the most critical role in the limit torque. The estimation formulae for the torsional stiffness and limit torque of the jaw coupling were obtained by using the statistical regression of the measured data, respectively. Both formulae predicted the performance of the optimal designs within 5% of error compared to the confirmation tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.