Abstract

A large volume airgun array is effective in generating seismic waves, which is extensively used in large volume bodies of water such as oceans, lakes and reservoirs. So far, the application of large volume airguns is subject to the distribution of large volume bodies of water. This paper reports an attempt to utilize large volume airguns in a small body of water as a seismic source for seismotectonic studies. We carried out a field experiment in Mapaoquan pond, Fangshan district, Beijing, during the period 25–30 May 2009. Bolt LL1500 airguns, each with volumes of 2000 in3, the largest commercial airguns available today, were used in this experiment. We tested the excitation of the airgun array with one or two guns. The airgun array was placed 7–11 m below the water's surface. The near- and far-field seismic motions induced by the airgun source were recorded by a 100 km long seismic profile composed of 16 portable seismometers and a 100 m long strong motion seismograph profile, respectively. The following conclusions can be drawn from this experiment. First, it is feasible to excite large volume airguns in a small volume body of water. Second, seismic signals from a single shot of one airgun can be recognized at the offset up to 15 km. Taking advantage of high source repeatability, we stacked records from 128 shots to enhance the signal-to-noise ratio, and direct P-waves can be easily identified at the offset ~50 km in stacked records. Third, no detectable damage to fish or near-field constructions was caused by the airgun shots. Those results suggest that large volume airguns excited in small bodies of water can be used as a routinely operated seismic source for mid-scale (tens of kilometres) subsurface explorations and monitoring under various running conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.