Abstract

Microchannels and minichannels are being considered for high heat flux applications under microgravity environment in space missions. An experimental study is undertaken to determine the effect of gravitational orientation on flow boiling characteristics of water in a set of six parallel minichannels, each 1054μm wide by 197μm deep and 63.5mm long with a hydraulic diameter of 333μm. Three orientations—horizontal, vertical downflow, and vertical upflow—are investigated under identical operating conditions of heat and mass fluxes. High-speed images are obtained to reveal the detailed two-phase flow structure and liquid-vapor interactions. The experimental data and high speed flow visualization indicate that compared to the horizontal case, the flow becomes less chaotic for the vertical upflow case, while the reversed flow becomes more pronounced in the vertical downflow case. The resulting increase in the backflow is responsible for channel-to-channel flow maldistribution and heat transfer degradation. From the heat transfer data it is concluded that the performance of the tested channels in a microgravity environment will be similar to the horizontal flow case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.