Abstract

This paper investigates the effectiveness and efficiency of two competitive (predator-prey) evolutionaryprocedures for training multi-layer perceptron classifiers: Co-Adaptive Neural Network Training, and a modifiedversion of Co-Evolutionary Neural Network Training. The study focused on how the performance of the two procedures varies as the size of the training set increases, and their ability to redress class imbalance problems of increasing severity. Compared to the customary backpropagation algorithm and a standard evolutionary algorithm, the two competitive procedures excelled in terms of quality of the solutions and execution speed. Co-Adaptive Neural Network Training excelled on class imbalance problems, and on classification problems of moderately large training sets. Co-Evolutionary Neural Network Training performed best on the largest data sets. The size of the training set was the most problematic issue for the backpropagation algorithm and the standard evolutionary algorithm, respectively in terms of accuracy of the solutions and execution speed. Backpropagation and the evolutionary algorithm were also not competitive on the class imbalance problems, where data oversampling could only partially remedy their shortcomings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.