Abstract

A low-temperature gas-phase kinetics study of the reactions and collisional relaxation processes involving C2(X1Sigma(g)+) and C2(a3Pi(u)) in collision with O2 and NO partners at temperatures from 300 to 24 K is reported. The experiments employed a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) apparatus to attain low temperatures. The C2 species were created using pulsed laser photolysis at 193 nm of mixtures containing C2Cl4 diluted in N2, Ar, or He carrier gas. C2(X1Sigma(g)+) molecules were detected via pulsed laser-induced fluorescence in the (D1Sigma(u)+ <-- X1Sigma(g)+) system, and C2(a3Pi(u)) molecules were detected via pulsed laser-induced fluorescence in the (d 3Pi(g) <-- a 3Pi(u)) system. Relaxation of 3C2 by intersystem crossing induced by oxygen was measured at temperatures below 200 K, and it was found that this process remains very efficient in the temperature range 50-200 K. Reactivity of C2(X1Sigma(g)+) with oxygen became very inefficient below room temperature. Using these two observations, it was found to be possible to obtain the C2(X1Sigma(g)+) state alone at low temperatures by addition of a suitable concentration of O2 and then study its reactivity with NO without any interference coming from the possible relaxation of C2(a3Pi(u)) to C2(X1Sigma(g)+) induced by this reagent. The rate coefficient for reaction of C2(X1Sigma(g)+) with NO was found to be essentially constant over the temperature range 36-300 K with an average value of (1.6 +/- 0.1) x 10(-10) cm3 molecule(-1) s(-1). Reactivity of C2(a3Pi(u)) with NO was found to possess a slight negative temperature dependence over the temperature range 50-300 K, which is in very good agreement with data obtained at higher temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.