Abstract

Significant interaction-induced perturbation of the dipole moment function for the hydrogen iodide molecule is demonstrated in the absorption spectra of gas mixtures with xenon at elevated pressures. The integrated IR intensity of the (0001) ← (0000) HI fundamental stretch mode is found to increase by about 50% and the intensity of the first vibrational overtone (0002) ← (0000) mode to decrease by an order of magnitude in the spectra of binary Xe:HI van der Waals dimers, compared to the absorption intensities of free HI. Strong m-dependent variation with the perturber gas densities of the spectral line intensities for unbound molecules renders the Herman–Wallis analysis of the vibration–rotation coupling effect on the dipole moment function invalid for the high-density gas systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.