Abstract
This experimental study investigates the critical role and impact of additive concentration in enhancing the tribological performance of castor oil as a biolubricant for agricultural tractor engines. Friction and wear are major contributors to reduced engine efficiency, highlighting the need for effective lubrication strategies. While biolubricants like castor oil offer environmental benefits, they often require additives to achieve optimal performance. However, the concentration of these additives is crucial, as an imbalance can negatively impact the lubrication system, leading to a higher coefficient of friction, increased wear, and reduced engine efficiency and lifespan. This study examines the effects of varying concentrations of a mixture of propyl gallate (PG) and ionic liquid (IL) additives on the tribological performance of castor oil. The tribological behaviour of lubricated top compression piston ring and cylinder liner samples was evaluated under simulated engine conditions using a Bruker UMT Tribolab test rig, in accordance with the ASTM G181 standard. The experimental results revealed an influence of additive concentration on the coefficient of friction and wear behaviour. This emphasises the importance of optimising additive formulations to minimise engine wear and friction. Notably, a 0.5% volume concentration of the additive mixture led to a remarkable 34.8% reduction in the average coefficient of friction (COF) and a lower wear rate.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have