Abstract
An experimental extrapolation technique is presented, which can be used to determine the relative output factors for very small x-ray fields using the Gafchromic EBT3 film. Relative output factors were measured for the Brainlab SRS cones ranging in diameters from 4 to 30 mm(2) on a Novalis Trilogy linear accelerator with 6 MV SRS x-rays. The relative output factor was determined from an experimental reducing circular region of interest (ROI) extrapolation technique developed to remove the effects of volume averaging. This was achieved by scanning the EBT3 film measurements with a high scanning resolution of 1200 dpi. From the high resolution scans, the size of the circular regions of interest was varied to produce a plot of relative output factors versus area of analysis. The plot was then extrapolated to zero to determine the relative output factor corresponding to zero volume. Results have shown that for a 4 mm field size, the extrapolated relative output factor was measured as a value of 0.651 ± 0.018 as compared to 0.639 ± 0.019 and 0.633 ± 0.021 for 0.5 and 1.0 mm diameter of analysis values, respectively. This showed a change in the relative output factors of 1.8% and 2.8% at these comparative regions of interest sizes. In comparison, the 25 mm cone had negligible differences in the measured output factor between zero extrapolation, 0.5 and 1.0 mm diameter ROIs, respectively. This work shows that for very small fields such as 4.0 mm cone sizes, a measureable difference can be seen in the relative output factor based on the circular ROI and the size of the area of analysis using radiochromic film dosimetry. The authors recommend to scan the Gafchromic EBT3 film at a resolution of 1200 dpi for cone sizes less than 7.5 mm and to utilize an extrapolation technique for the output factor measurements of very small field dosimetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.