Abstract
A binary AgI/ Ag2WO4 photocatalyst was fabricated and characterized by SEM, XRD, UV-Vis DRS, and FT-IR. It was then used to photodegrade sodium ceftriaxone (CTX) in an aqueous solution. The band gap energies of 2.95, 2.78, and 2.62eV were obtained by the Kubelka-Munk model for Ag2WO4, AgI, and AgI/Ag2WO4 catalysts. The samples have pHPZC values of 6.9, 4.2, and 6.6, respectively. The synergistic photocatalytic activity of the coupled system depended on the AgI:Ag2WO4 mole ratio and grinding time (optimums:mole ratio of 4:1 and time 30min). The experimental design was used for optimizing the conditions and a quadratic model well-processed the data based on the model F value of 131.87 > F0.05,14,13 = 2.55 and LOF F value of 0.78 < F0.05,10,3 = 8.78. The optimized RSM run included the irradiation time of 85min, 3.5mg/L of CTX sample at pH 9, and a catalyst dose of 1.0g/L. Under the optimized conditions, about 63% of CTX molecules were photodegraded. In the study of the scavenging agents, the direct Z-scheme mechanism accumulated electrons in the CB-AgI and the holes in the VB-Ag2WO4 level, as stronger reducing and oxidizing centers than the accumulated electrons and holes of the type (II) heterojunction mechanism. Compared to a CTX oxidation potential of about 0.06V, the direct Z-scheme mechanism is more favorable to reduce or oxidize it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.