Abstract

This paper presents an experimental application of the aeroacoustic time-reversal (TR) source localization technique for studying flow-induced noise problems and compares the TR results with those obtained using conventional beamforming (CB). Experiments were conducted in an anechoic wind tunnel for the benchmark test-case of a full-span circular cylinder located in subsonic cross-flow wherein the far-field acoustic pressure was sampled using two line arrays (LAs) of microphones located above and below the cylinder. The source map obtained using the signals recorded at the two LAs without modeling the reflective surfaces of the contraction-outlet and cylinder during TR simulations revealed the lift-dipole nature of aeroacoustic source generated at the Aeolian tone; however, it indicates an error of 3/20 of Aeolian tone wavelength in the predicted location. Modeling the reflective contraction-outlet during TR was shown to improve the focal-resolution of the source and reduce side-lobe levels, especially in the low-frequency range. The experimental TR results were shown to be comparable to (a) the simulation results of an idealized dipole at the cylinder location in wind-tunnel flow and (b) that obtained by monopole and dipole CB, thereby demonstrating the suitability of TR method as a diagnostic tool to analyze flow-induced noise generation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.