Abstract

In the present approach, we have successfully synthesized wormlike Ni3S2 and Ni3S2-RGO hybrids on nickel (Ni) foam by a facile and highly reproducible one-step chemical vapor deposition (CVD) method. We have demonstrated that Ni3S2 and Ni3S2-RGO hybrids can be grown directly on the current collector of energy storage devices without using any binder, which may lead to serve industry for large-scale production of the material. We have studied the pseudocapacitive energy storage performance of the CVD grown Ni3S2 and its hybrids with variable concentration of RGO. The Ni3S2-RGO hybrid with 0.5 mg GO showed a maximum areal specific capacitance of 1.4 F·cm−2 at a current density of 1 mA·cm−2 (approximately 1124 Fg−1 at a current density of 1 Ag−1). The enhanced supercapacitive performance of Ni3S2-RGO predominantly due to its high surface area and high conductivity as compared to bare Ni3S2. The electrochemical impedance spectroscopic analysis revealed Ni3S2-RGO possess enhanced charge-transfer characteristics as compared to bare Ni3S2. Furthermore, Density Functional Theory (DFT) simulations infer the strong hybridization between C p orbital and Ni d orbital lead to enhanced electrochemical property and Density of States (DOS) is crucially responsible for the improved charge storage performance of Ni3S2-RGO hybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.