Abstract

Dependence graphs and memoization can be used to efficiently update the output of a program as the input changes dynamically. Recent work has studied techniques for combining these approaches to effectively dynamize a wide range of applications. Toward this end various theoretical results were given. In this paper we describe the implementation of a library based on these ideas, and present experimental results on the efficiency of this library on a variety of applications. The results of the experiments indicate that the approach is effective in practice, often requiring orders of magnitude less time than recomputing the output from scratch. We believe this is the first experimental evidence that incremental computation of any type is effective in practice for a reasonably broad set of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.