Abstract

A lot of work has been carried out to prepare chemically homogeneous (1 0 0) silicon surfaces. The hydrogen-terminated (1 0 0) silicon surfaces are the most promising ones, especially in view of their remarkable environmental stability. The simplest way to produce hydrogen-terminated surfaces (attack in water solution of HF of a sacrificial, thermally grown, oxide) results in strongly heterogeneous rough surfaces (although with prevailing dihydride terminations). These surfaces can, however, be flattened and homogenized by treating them in H 2 at high temperature ( > 850 ° C). The morphological and chemical changes undergone by the surface during the treatment are studied X-ray photoelectron spectroscopy, atomic force microscopy, scanning tunnelling microscopy, infrared absorption spectroscopy in the attenuated total reflection mode, reflection high energy electron diffraction and thermal programmed desorption, and the mechanisms responsible for them are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.