Abstract

Experiments were conducted to evaluate the evolution of hardness and microstructure in a commercial Cu–2.5Ni–0.6Si alloy (in wt%) after processing using High-Pressure Torsion (HPT) at room temperature with an imposed pressure of 6.0GPa and Equal-Channel Angular Pressing (ECAP) at 423K using a channel angle of 135°. Hardness measurements, X-ray diffraction and transmission electron microscopy (TEM) were used for microstructural evaluation and the results show a general consistency between these various techniques. The changes in the crystallite size and the dislocation structure as a function of the number of HPT revolutions and ECAP passes are discussed and compared with the results of the TEM observations. The detailed microstructural observations show a gradual evolution with increasing numbers of revolutions and passes with a saturation after 3 turns of HPT but with no saturation attained in ECAP even after 12 passes because of the lower imposed strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.