Abstract
An assumption that the normal component of the electric displacement on crack faces is thought of as being zero is widely used in analyzing the fracture mechanics of piezoelectric materials. However, it is shown from the available experiments that the above assumption will lead to erroneous results. In this paper, the two-dimensional problem of a piezoelectric material with a crack is studied based on the exact electric boundary condition on the crack faces. Stroh formalism is used to obtain the closed-form solutions when the material is subjected to uniform loads at infinity. It is shown from these solutions that: (i) the stress intensity factor is the same as that of isotropic material, while the intensity factor of the electric displacement depends on both material properties and the mechanical loads, but not on the electric load. (ii) the energy release rate in a piezoelectric material is larger than that in a pure elastic-anisotropic material, i. e., it is always positive, and independent of the electric loads. (iii) the field solutions in a piezoelectric material are not related to the dielectric constant of air or vacuum inside the crack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.