Abstract
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.
Highlights
An evolutionary Firefly Algorithm (FA)-directed algorithm was used to find the optimal solution to the goal programming model
The osmotic drying parameters determined by the FA were superior to the solutions found by all previous computational approaches
A sensitivity analysis of the osmotic dehydration model demonstrated the relative impact on the FA of the key runningtime parameters of the number of iterations and the number of fireflies
Summary
As with many agricultural commodities, the high moisture content of papayas renders them highly perishable and, due to various chemical, microbial, and enzymatic reactions, they commence decomposition immediately upon harvesting [2] [3] It is, imperative to establish effective preservation techniques to maintain the overall quality of the produce. The quality of the subsequent product is superior to one without pre-treatment due to 1) increases in the solid gain transfer of sugar and salt from the solution, 2) the improvements to texture of the fruits and vegetables, and 3) the stability of the colour pigmentation during storage [5] [13].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.