Abstract

This paper presents the results of a study conducted to evaluate the inherent memory reference behavior of several engineering/scientific applications, executing on shared memory, MIN-based, parallel systems. In this study, system sizes of two to 64 processors were evaluated. A trace-driven simulation model was used to obtain dynamic reference characteristics of the code. Included in this code were explicit declarations of shared variables. Our results indicate that a significant amount of explicitly declared shared data is accessed as either readonly by several processors, or read-write by a single processor. Furthermore, lines containing synchronization variables tend to see small ownership times at a processor and are accessed by several processors in the system. We also note that, as expected, relatively more references are to data with smaller ownership times, as the number of processors increase. Finally, the application data set size can have an impact on ownership time, as the number of processors increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.