Abstract

Single nucleotide polymorphisms (SNPs) in genes coding for proteins that maintain the cytosolic aryl hydrocarbon receptor (AHR) complex may affect individual susceptibility to dioxin-like compound (DLC)-induced toxicity. The cytosolic 90 kDa heat shock proteins (HSP90s) are ubiquitous chaperone proteins that bind to and stabilize numerous client proteins, including non-ligand-bound AHR. The objective of this study was to characterize SNPs in the human cytosolic HSP90 genes (HSP90AA1 and HSP90AB1). DNA sequencing of 101 human samples detected eight and seven unique SNPs at the HSP90AA1 and HSP90AB1 loci, respectively. For HSP90AA1, two non-synonymous (L71M and E554D) and one rare early termination (Q107X) SNP were observed. One SNP (E554D) was a rare novel polymorphism located in the middle substrate binding region. All SNPs detected in the HSP90AB1 gene were synonymous. With the exception of Q107X, in silico analyses predicted all HSP90 SNPs would have very low to medium risk of affecting the regulation of alternative splicing in gene transcription or protein function. Overall, a very limited presence of SNPs with predicted functional consequence in key domains of the human HSP90 proteins was observed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.