Abstract

Droplet size substantially affects the fate of oil released from deep subsea leaks. A baseline dataset of volume-median droplet diameters (d50), culled from ~250 laboratory observations, is used to validate seven droplet-size models. Four models compare reasonably well, having 95% confidence limits in d50 of ~±50%. Simulations with a near-field fate model (TAMOC) reveals that the four best-performing models, with d50 of 1.3–2.2 mm, agree similarly with observed fractionation of petroleum compounds in the water column during June 4–July 15, 2010. Model results suggest that, had a higher dose of dispersant been applied at the wellhead during Deepwater Horizon oil spill (DWH), the d50 would have dropped by an order of magnitude, reducing surfacing C1–C9 volatiles by 3.5×. Model uncertainty is found to be substantial for DWH-like blowouts treated with chemical dispersants, suggesting the need for further droplet-size model improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.