Abstract

Different versions of generalized and ordinary ridge estimators and shrinkage estimators of regression coefficients are studied in comparison with least squares estimators using simulations. The results show that some of the biased estimators considered are better than the least squares estimator in general and the improvement is substantial in some cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.