Abstract

This study assesses a particular model for the unidirectional propagation of water waves, comparing its predictions with the results of a set of laboratory experiments. The equation to be tested is a one-dimensional representation of weakly nonlinear, dispersive waves in shallow water. A model for such flows was proposed by Korteweg & de Vries (1895) and this has provided the theoretical basis for a number of laboratory experiments. Some recent studies that have been made in the area are those of Zabusky & Galvin (1971), Hammack (1973) and Hammack & Segur (1974). In each case the theoretical model gave a good qualitative account of the experiments, but the quantitative comparisons were not very extensive. One of the purposes of this paper is to provide a more detailed quantitative assessment of a particular model than has been given to date. An important aspect of the formulation of the theoretical model is the specification of the initial conditions and the boundary conditions for the equation. Zabusky & Galvin (1971) considered an initial-value problem having spatial periodicity, whereas Hammack (1973) and Hammack & Segur (1974) considered an initial-value problem posed on the real line. In contrast, we shall consider an initial-value problem posed on the half line with boundary data specified at the origin. This problem was chosen to correspond with an experiment in which waves were generated at one end of a long channel, and obviates certain difficulties inherent in the other formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.