Abstract

A novel gas sensor for the determination of ethanol was proposed in the present work, which was based on the generated cataluminescence emission from catalytic oxidation of ethanol on the surface of ZnO nanoparticles. The cataluminescence characteristics and the effect of different parameters on the signal intensity, such as morphology of synthesized ZnO, temperature and flow rate, were discussed in detail. Under the optimized experimental conditions, the calibration curve of cataluminescence intensity versus ethanol vapor concentration was linear in the range 1.0–100 ppm, and with a detection limit of 0.7 ppm (S/N = 3). Compared with the traditional electrical conductivity-based ZnO gas sensor for the determination of ethanol, the proposed ethanol sensor showed the advantages of high sensitivity, high selectivity and low working temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.