Abstract

With the construction of the UHV (Ultra High Voltage) AC/DC hybrid power grid and the large-scale access to renewable energy such as wind power, frequency dynamic fluctuation has become a prominent problem affecting the safe and stable operation of large power grids. The expansion of the scale of the power system makes it impossible to use traditional fine modeling to analyze the power system. In order to reduce the calculation scale and storage capacity of power system frequency dynamic simulation, it is necessary to make appropriate equivalent simplification of the external system, so the appropriate dynamic equivalent method is of great significance. This paper mainly studies the equivalent model suitable for frequency dynamic analysis of large power grids. Firstly, the typical models of generator set and load are simplified, and the parameters that have a great influence on frequency in the simplified model are obtained through characteristic analysis. Then, a dynamic aggregation method of generator governor and prime mover parameters and load parameters based on regulation performance weighting (the parameters of the generator or load are weighted and summed according to its regulation ability on the system) is proposed. This method is applied to the simulation example of the East China Power Grid. The simulation proves that the frequency of the East China Power Grid before and after equivalence can be consistent under four different faults, which verifies the effectiveness of the equivalent method proposed in this paper in the frequency dynamic analysis of large power grids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.