Abstract
Glucose sensors are vital devices for blood glucose detection in the diabetes care. Different from traditional electrochemical devices based on glucose oxidase, the glucose sensor based on the glucose-responsive hydrogel is more robust owing to its enzyme-free principle. However, integrating the high sensitivity, fast response, wide measuring range and low-cost fabrication into a hydrogel sensor is still challenging. In this study, we present a physical capacitive sensor, which consists of interdigital carbon electrodes (ICEs) fabricated by a direct laser writing technology and glucose-responsive hydrogel (DexG-Con A hydrogel) built by UV curing in situ. The dielectric property of DexG-Con A hydrogel changes accordingly with the change in environmental glucose concentration. Experimental results demonstrate that in a glucose concentration range of 0-30 mM, the proposed hydrogel sensor is capable of measuring the glucose level in a repeatable and reversible manner, showing a short responsive time of less than 2 min and a high sensitivity of 8.81 pF mM-1 at a glucose range of 0-6 mM. Owing to its simple fabrication process, low-cost and high performance, the proposed glucose sensor shows great potential on batch production for continuous glucose monitoring application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.