Abstract

Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

Highlights

  • Many feed ingredients for swine diets have a considerable amount of non-starch polysaccharide (NSP), which acts as an anti-nutritional factor (Bedford and Schulze 1998; Masey O’Neill et al 2014)

  • The objectives of this study were to screen the feed ingredients for the enzyme complex using in vitro digestibility methods and to determine the effects of the enzyme complex on the in vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of dry matter (DM) for the fractions of an ingredient that maximally respond to the enzyme complex

  • In experiment 1, the IVID of DM for corn and wheat increased (p = 0.029 and p = 0.003, respectively; Table 1) with the enzyme complex addition compared with the control

Read more

Summary

Introduction

Many feed ingredients for swine diets have a considerable amount of non-starch polysaccharide (NSP), which acts as an anti-nutritional factor (Bedford and Schulze 1998; Masey O’Neill et al 2014). Inclusion of exogenous NSP-degrading enzyme in diet may increase the energy values by increasing digestibility of nutrients. Bergazyme-P® is an enzyme complex that is consisted of β-pentosanase, β-glucanase, α-amylase, protease, glucanase and galactomannanase. The one of the main enzymes in this product is β-pentosanase and one of main substrates of this enzyme, arabinoxylan, is most common. NSP in cereal grains (Masey O’Neill et al 2014). Supplementation of the enzyme complex, Bergazyme-P®, at 0.025 and 0.050 % has been reported to improve growth performance and amino acid digestibility in broilers (Abudabos 2010). Information on the effects of this enzyme complex to be tested in this study on pigs is very limited

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.